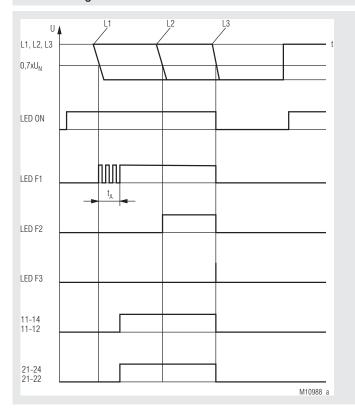
Monitoring technique


VARIMETER Fuse monitor UG 9075

Translation of the original instructions

Function Diagram

3-phase connetion to monitor 3 fuses

LED F1	LED F2	LED F3	Relay output
1	1	1	off
0	1	1	on
1	0	1	on
1	1	0	on
0	0	1	on
0	1	0	on
1	0	0	on
0	0	0	off

Logic table for 3 fuses

1: Fuse OK, 0: Fuse blown

LED F1	LED F2	LED F3	Relay output
1	1	1	off
0	1	1	on
1	0	0	on
0	0	0	off

Logic table for monitoring of 2 fuses

in a single-phase a.c. system

1: Fuse OK, 0: Fuse blown

Your advantages

- Increasing the availability of plants by early detection of blown fuses, that may cause damage if undetected
- Fast detection of blown fuses also with disconnected load availability of your plant on request
- · Reliable detection of blown fuses inspite of:
 - Asymmetric mains
 - Harmonic content

Features

- According to IEC/EN 60255-1
- To monitor fuses in single and 3-phase AC voltage systems
- Undervoltage detection below 0.7 x U_N
- No separate auxiliary necessary
- · 2 changeover contacts
- 2 nominal voltages adjustable: 3/N AC 240 V / 140 V or 3/N AC400 V / 230 V or fixed nominal voltage: 3/N AC 110 V / 64 V
- Adjustable operate delay
- · Energized on trip
- · Automatic adjustment to 50 Hz and 60 Hz mains frequency
- Width 22.5 mm

Approvals and Markings

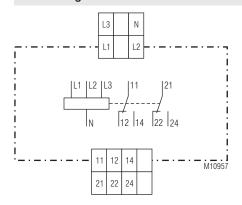
Application

Monitors the state of 1-3 fuses in single- or 3-phase voltage systems. e.g. for automatic disconnection and lockout of a 3 phase motor in the case of a fuse failure.

Function

During initialisation the fuse monitor recognises the mains frequency (50 Hz or 60 Hz). When monitoring fuses in a 3-phase system all the phases are measured against N. The recognition of a blown fuse is done by monitoring the voltage at the fuse input terminals F1, F2 and F3. A voltage drop on one of these input terminals below 0.7 x $U_{\rm N}$ is an indication for a blown fuse. In case an undervoltage condition on any of the three terminals has been recognized the LED of the corresponding terminal starts blinking red. After the adjusted response time has expired, the LED switches on red continuously. At the same time the relay, which works in open circuit alarm mode, switches its state. After the terminal voltage exceeds the switching level again e.g. by replacing the blown fuse, the corresponding LED immediately turns off and at the same time the relay switches back into idle mode.

When monitoring fuses in a 1-phase system, up to 3 fuses can be connected to the same phase and being monitored.


At Variant for 3/N AC 240 V / 140 V and 3/N AC 400 V / 230 V are both voltage ranges via potentiometer settable.

Notes

For reliable detection of fuse failure with large inductive loads we recommend to have symmetric loads.

When using the fuse monitor with motor loads it could happen, due to feedback voltage, that the failed fuse is only detected after the motor is switched off.

Circuit Diagrams

Connection Terminals

Terminal designation	Signal description	
L1, L2, L3, N	Connection for fuses	
11, 12, 14, 21, 22, 24	Blown fuse-indicatior relay	
11, 12, 14, 21, 22, 24	(2 changeover contacts)	

Indicators

Green LED "ON" On, when supply connected

Red LED "F1, F2, F3"

Shows that the voltage is dropped under

0.7 U_N after the fuse which indicates a

blown fuse

Technical Data

Input

Nominal voltage U_N: 3/N AC 240 V / 140 V

3/N AC 400 V / 230 V 3/N AC 110 V / 64 V

Voltage range: $0.7 \dots 1.1 \text{ U}_{\text{N}}$ Nominal frequency: 50 / 60 HzNominal consumption: Approx. 2 W

Measuring circuit

Monitoring voltage U_N : 3/N AC 240 V / 140 V

3/N AC 400 V / 230 V 3/N AC 110 V / 64 V

Monitoring range: $0.7 \dots 1.1 \text{ U}_{\text{N}}$

Response value: $0.7 \times U_N$ **Hysteresis:** 10 %

Number of monitored fuse: 1 ... 3

On delay: Infinite adjustable

instantaneuos (< 200 ms), 2 ... 25 s

Release delay: Instantaneuos

 $\begin{array}{lll} \textbf{Accuracy:} & & \pm \ 3 \ \% \\ \textbf{Repeat accuracy:} & & \pm \ 1 \ \% \\ \end{array}$

Output

Contacts: 2 changeover contacts

Contact material: AgNi **Measured nominal voltage:** AC 250 V

Switching capacity

To AC 15

NO and NC contact: 3 A / AC 120 V IEC/EN 60947-5-1 1.5 A / AC 240 V IEC/EN 60947-5-1

To DC 13

NO and NC contact: 0.22 A / DC 120 V IEC/EN 60947-5-1

0.1 A / DC 250 V IEC/EN 60947-5-1

Electrical life

To AC 1 at 8 A, AC 250 V: Shortcircuit protection

250 V: > 10⁵ switching cyles IEC/EN 60947-5-1

Max. fuse: 3 A gG / gL IEC/EN 60947-5-1

Mechanical life: > 3 x 10⁷ switching cyles

Technical Data

General Data

Operating mode: Continuous operation

Temperature range

Operation: $0 \dots + 60 \,^{\circ}\text{C}$ Storage: $-25 \dots + 60 \,^{\circ}\text{C}$ Relative air humidity: $93 \,^{\circ}$ at $40 \,^{\circ}\text{C}$ Altitude: $< 2000 \,^{\circ}\text{m}$

Rated impulse voltage/

Pollution degree: 4 kV/ 2 IEC 60664-1

EMC

Electrostatic discharge (ESD): 8 kV (Luftentladung) IEC/EN 61000-4-2

HF irradiation

80 MHz ... 2,7 GHz: 10 V / m IEC/EN 61000-4-3 Fast transients: 2 kV IEC/EN 61000-4-4

Surge Between

wires for power supply: 1 kV IEC/EN 61000-4-5
Between wire and ground: 2 kV IEC/EN 61000-4-5
HF-wire bound: 20 V IEC/EN 61000-4-6
Interference suppression: Limit value class B EN 55011

Protection degree:

Enclosure: IP 40 IEC/EN 60529
Terminals: IP 20 IEC/EN 60529
Enclosure: Thermoplastic with V0 behaviour

acc. to UL Subj. 94

Vibration resistance: Amplitude 0.35 mm,

Frequency 10 .. 55 Hz IEC/EN 60068-2-6 0 / 060 / 04 IEC/EN 60068-1

Climate resistance: 0 / 060 / 04
Terminal designation: EN 50005

Wire connection: DIN 46228-1/-2/-3/-4

Plugin with

screw terminals (PS)

Max. cross section for connection: 1 x 0,25 ... 2,5 mm² solid or

stranded ferruled (isolated) or 2 x 0,25 ... 1,0 mm² solid or stranded ferruled (isolated)

Insulation of wires

or sleeve length: 7 mm

Wire fixing: Captive slotted screw

 Fixing torque:
 0,5 ... 0,6 Nm

 Mounting:
 DIN rail

 Weight:
 Approx. 190 g

Dimensions

Width x height x depth: 22.5 x 109 x 120.3 mm

2 11.01.21 en / 335A

Standard Types

UG 9075.12 PS $\,$ 3/N AC 240 / 140 V + 3/N AC 400 / 230 V $\,$

Article number: 0065531

2 nominal voltages adjustable:

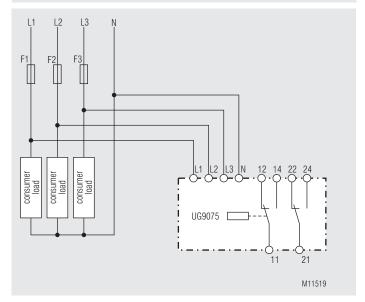
3/N AC 240 / 140 V + 3/N AC 400 / 230 V

Output: 2 changeover contacts
 Output: 2 changeover contacts

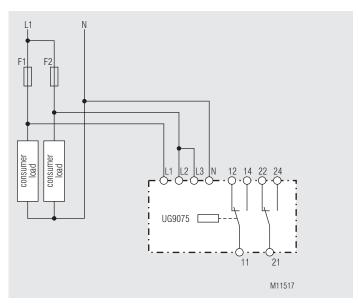
• Width: 22,5 mm

UG 9075.12PS 3/N AC 110 / 64 V
Article number: 0065532
• Fixed nominal voltage: 3/N AC 1

Fixed nominal voltage: 3/N AC 110 / 64 V
 Output: 2 changeover contacts


• Width: 22,5 mm

Options with Pluggable Terminal Blocks



Screw terminal (PS/plugin screw)

Application Examples

3-phase connection to monitor 3 fuses

1-phase connection to monitor 2 fuses

3 11.01.21 en / 335A

E. Dold & Söhne GmbH & Co	. KG • D-78120 Furtwangen	• Bregstraße 18 • Phone +49	7723 654-0 • Fax +49 7723 654356